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Analysis of the Junction Betvveen Smooth and

Corrugated Cylindrical Waveguides in

Mode Converters

LUIZ C. DA SILVA AND M. G. CASTELLO BRANCO

Abstract —A method for the determination of the scattering matrix of

the junction between smooth and corrugated cylindrical wavegnides is

developed based on the expansion of the modal fields for the corrugated

wavegoide into eigenfunctions of the transmission matrix of a wavegnide

nnit cell. This method, used in conjunction with usual techniques for

evaluation of the scattering matrix of mode converters, is here shown to

improve the precision of results obtained by rendering uniform the

accuracy of the models applied in the calculations. Also, the analysis is

now valid for any size of corrugation depth, and the frequency band of

applicability is enlarged accordingly.

I. INTRODUCTION

The return lQSS and the generation of unwanted modes in

corrugated horns are essentially determined by the characteris-

tics of the mode converter located between the smQoth-walled

input waveguide and the horn [1], [2]. A cQmmon type of

converter is composed of a nonuniform section of corrugated

waveguide with gradually varying slQt depths. In the typical

application of conversion frQm the TE1l to the HE1l mode in

cylindrical corrugated horns the initial slot has a depth of A/2

and the final one a depth of approximately A/4 [3]. Wider

bandwidths and lower SWR’S can be achieved using ring-loaded

corrugations or a quarter-wave transformer at the input of the

converter [4], [5].

An accurate performance analysis of the cQnverter, an essen-

tial prQcedure to validate its design, is normally made by divid-

ing the structure into several elementary sections, calculating

the scattering matrix of each section, and progressively cascad-

ing them to obtain the overall scattering matrix of the device

[1], [6].

Unless the cascading process is extended up to the aperture

of the horn [7] (which requires excessive computer time), it must

be stopped at a section where the remainder of the horn can be

approximated by a semi-infinite uniform corrugated waveguide.

In this case, the last elementary sectiQn tQ be computed is the

junction between a smooth-walled and a corrugated waveguide.

The usual method fQr calculating the scattering matrix of this

junction is based on mode-matching techniques, the mQdes in

the corrugated waveguide being obtained from an approximate

mQdel where the effect Qf the corrugations is represented by an

anisotropic impedance [1], [8], [9].

In most situations, this technique produces quite good results.

If the depth Qf the corrugations of the terminal corrugated

waveguide is small in comparison with a single wavelength,

however, significant errors are observed in the calculated return

loss.

The problem derives from the fact that in the adopted approx-

imate model for the corrugated waveguide, only the fundamen-
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Fig. 1. The umt cell of a corrugated wweguide.

tal mode propagating into the corrugations is considered. For

shallow corrugations, however, this fundamental mode has a

small magnitude, and higher order evanescent modes must be

taken into consideration.

In this paper, a more rigorous mQdel, one that circumvents

the problem cited above, will be presented for determining the

scattering matrix of the junction between smooth and corru-

gated cylindrical waveguides. The model, as will be shown here,

is based on the representation of the modal fields for the

corrugated waveguide by an expansion into eigenfunctions of

the transmission matrix of a unit cell formed by a period of the

waveguide.

II. MODAL FIELDS IN A CORRUGATED WAVEGUIDE

Consider a corrugated waveguide and isolate a unit cell of this

waveguide, as shown in Fig. 1. (The corrugations can be ring

loaded, as shown in the figure.) The modal fields for the

corrugated waveguide can be obtained from the eigenvectors of

the transmission matrix of the unit cell, according to the expres-

sions [10]

(la)

(lb)

Here .ZCmand ~C,, are the modal fields of the n th mode for the

corrugated waveguide, ~ and ~1 are the modal fields Qf the jth

mQde for a smooth-walled waveguide of radius a (inner radius

of the corrugated waveguide), a,, ~ is the jth component of the

n th eigenvect or, and 2 N is the dimension of the transmission

matrix.

The transmission matrix Qf the unit cell can be determined,

through algebraic operations, from the scattering matrix, and

the scattering matrix can be calculated according to [11, [2], [6],

or [7].

III. SCATTERING MATRIX OF THE SMOOTH –CORRUGATED

WAVEGUIDE JUNCTION

Consider the junction between a circular smooth-walled wave-

guide with radius al and a corrugated waveguide with inner

radius a. Without loss of generality, it will be assumed that

al = a (if not, the junction can be decomposed into a discontinu-

ity between two smooth-walled waveguides, with radii a ~ and a,

cascaded with a smooth–corrugated waveguide junction).
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Fig. 2. Return loss asa Function of frequency forthediscontinui~ betieen

a smooth-walled waveguide with an inner radius of 27 mm and a corru-

gated waveguide with an inner radius of 28 mm, a corrugation depth of

12.6 mm, aeorrugation length of 10 mm, and adistance between corruga-

tions of 5 mm. ( —) Theoretical results according to the present

method; (—.—.–) experimental ,results; (––––) theoretical results ac-

cording to [1].

The scattering matrix of the junction is given in [1]. Of

particularjntgrest he~e are the elements pij, qi;, and rj~ of the

matrices ~, ~, and ~ in [1]. Making use of (1) for the fields in

the corrugated waveguide and taking into consideration the

orthogonal& between modal fields for the smooth-walled wave-

guide (~, hi), the expressions for pij and gii take the form

Pij = aj+N, irjj (2a)

N

q,, = ~ crjiaj+N,irjj
j=l

(2b)

where it is assumed that the first N eigenvalues of the transmis-

sion matrix correspond to modes propagating in the positive z

direction and the expression for rjj is given by [1, eq. (13)].

Only a slight effort is necessary to implement this technique

into previously developed computer programs for the analysis of

mode converters, since the algorithms for the calculation of

scattering matrices are already available in such programs.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

An example of a typical situation where the present method

of analysis ;mproves”the accuracy of the results is now consid-

ered. The scattering matrix of the discontinuity between a

smooth-walled waveguide with inner radius of 27 mm and a

corrugated waveguide with inner radius of 28 mm, corrugation

depth of 12.6 mm, corrugation length of 10 mm, and distance

bekeen corrugations of 5 mm (the corrugation depth corre-

sponding to 0.1248A at 3.4 GHz) was computed. The calculated

return loss, as a function of frequency, is shown in Fig. 2. In the

same figure are also shown measured results and theoretical

results obtained according to [1] (approximate impedance model

for the terminal corrugated waveguide). It is observed that the

method proposed here produces good agreement with experi-

ment, with discrepancies less than 1.5 dB over the frequency

band. The method proposed in [1] introduces a significant error

at the lower frequencies, amounting to 8 dB at the lowest

frequency.

As a second example, the mode converter shown in Fig. 3,

with the dimensions given in Table I, was considered. The

calculated return loss, as a function of frequency, applying the

present method of analysis is shown in Fig. 4. The scattering

matrices of the sections of the converter preceding the terminal

discontinuity smooth–corrugated waveguide were determined
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Fig. 3. bmgitudinal section of the TE1l-to-EH II mode converter.

TABLE I

DIMENSIONS(IN MM) OF mm MODE CONVERTERSHOWNIN FIG. 3
—

i

1

2

3

4

5

6

7

8

9

10

—

‘i

27.00

27.50

27.50

27.75

27.75

28.00

28.00

28.00

28.00

28.00

L’i——

41.75

42.00

42.13

42.25

42.50

42.50

42.00

41.60

41.10

40.60

——

‘i
——

3.21

5.71

7.00

8.50

10.00

10.00

10.00

10.00

10.00

10.0

9.i

12.50

10.00

6.43

5.43

5.00

5.00

5.00

5.00

5.00

5.00

v

eerrugated

waveguide

according to [6]. Eighteen modes in the inner waveguide and

four radial modes in the corrwzations were sufficient to ensure

convergence of the results.

Also shown in Fig, 4 are the measured results and theoretical

results obtained according to [1]. Once again, the present method

of calculation produces results in good agreement with experi-

ment (discrepancies less than 1.5 dB for return losses below 30

dB). The error introduced by the approximate impedance model

reaches a value of 8.0 dB at the lower end of the frequency

band.

V. CONCLUSIONS

A rigorous method for the determination of the scattering

matrix of the discontinuity between smooth-walled and corru-

gated cylindrical waveguides was developed. The method can be

easily implemented in existing computer programs for the im-

proved analysis of the performance of cylindrical waveguide

mode converters. This method is particularly useful in mode
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Fig. 4. Return loss, as a function of frequency. for the mode converter

shown in Fig. 3. (— ) Theoretical results according to the present

method; (—- —) experimental results; (––––) theoretical results ac-

cording to [1].

converters terminated into corrugated waveguides with shallow

corrugations.
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Resonant Frequency of Cylindrical Dielectric

Resonator Placed in an MIC Environment

R. K. MONGIA, MEMBER, IEEE

Abstract —In this paper, an effective dielectric constant technique has

been used to determine the resonant frequency of the TE018 mode of a

cylindrical dielectric resonator placed in an MIC environment. A suit-

able expression for C,fl has been reported which makes it possible to

obtain results that compare favorably with rigorous methods. A large

nnmber of experimental results are also reported to demonstrate the

validity of the method. Finally, for a given resonant frequency, closed-

form expressions are given for compnting the height of the resonator.
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Fig. 1. Cylindrical dielectric resonator placed m an MIC environment.

I. INTRODUCTION

A typical configuration in which a cylindrical dielectric res-

onator is used in MIC’S is shown in Fig. 1. A few rigorous

methods have been reported during the last few years for

determining the resonant frequency of a dielectric resonator

placed in configurations of the type shown in Fig. 1 (e.g. [1] and

[2]). A number of rigorous methods have also been reported for

structures which are special cases of the structure shown in Fig.

1 [3]-[9]. However, all the rigorous methods are computationally

quite complex, which makes their use in practical design appli-

cations almost prohibitive. On the other hand, approximate

methods such as the dielectric waveguide model (DWM) method

[10] are simple to use but do not offer adequate accuracy.

Today’s CAD trends indicate the need for a method which

offers both simplicity and accuracy. An approximate but accu-

rate and simple effective dielectric constant technique has previ-

ously been proposed for the analysis of isolated cylindrical

dielectric resonators [11], [12]. The technique is basically an

improvement of the DWM method. In principle, the improve-

ment is similar to that offered by the EDC technique [13] over

Marcatili’s method [14] for analyzing rectangular dielectric

waveguide structures. In this paper, we use the effective dielec-

tric constant technique to find the resonant frequency of the

structure shown in Fig. 1. The technique leads to results nearly

matching in accuracy those of rigorous methods. The resonant

frequency of the resonator has been obtained by using a suitable

approximation for e,ff. The expression reported for C,ff is differ-

ent from the one used earlier for the case of an isolated

resonator [11], [12].

II. THEORY

We limit our attention to the lowest order TE ~la mode of

resonance, which is the most commonly employed mode of

resonance in practical applications. For this mode, only three

field components, i.e., E+, Hz and H,, exist. The HZ compo-

nent, from which the other field components can be derived, is

assumed to be of the following form inside the resonator at

resonance:

H:= Jo(kr)[A~cos{P( z- H1)}+Bm sin{p(~– H~)}] (1)

In the above equation JO denotes the Bessel function of first

kind and order zero. The problem of finding the resonant

frequency is one of finding wavenumbers h and /3 which also

satisfy the separation equation

hz+&=E,k;

where k. is the free-space wavenumber

(2)

corresponding to the
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